Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays.
نویسندگان
چکیده
A novel application of bioluminescence for nucleic acid quantification, the bioluminescence regenerative cycle (BRC), is described in theoretical terms and supported by preliminary experimental data. In the BRC system, pyrophosphate (PPi) molecules are released during biopolymerization and are counted and correlated to DNA copy number. The enzymes ATP-sulfurylase and firefly luciferase are employed to generate photons quantitatively from PPi. Enzymatic unity-gain positive feedback is implemented to amplify photon generation and to compensate for decay in light intensity by self-regulation. The cumulative total of photons can be orders of magnitude higher than in typical chemiluminescent processes. A system level theoretical model is developed, taking into account the kinetics of the regenerative cycle, contamination, and detector noise. Data and simulations show that the photon generation process achieves steady state for the time range of experimental measurements. Based on chain reaction theory, computations show that BRC is very sensitive to variations in the efficiencies of the chemical reactions involved and less sensitive to variations in the quantum yield of the process. We show that BRC can detect attomolar quantities of DNA (10(-18) mol), and that the useful dynamic range is five orders of magnitude. Sensitivity is not constrained by detector performance but rather by background bioluminescence caused by contamination by either PPi or ATP (adenosine triphosphate).
منابع مشابه
Bioluminescence Regenerative Cycle (BRC) System for Nucleic Acid Quantification Assays
A new label-free methodology for nucleic acid quantification has been developed where the number of pyrophosphate molecules (PPi) released during polymerization of the target nucleic acid is counted and correlated to DNA copy number. The technique uses the enzymatic complex of ATP-sulfurylase and firefly luciferase to generate photons from PPi. An enzymatic unity gain positive feedback is also ...
متن کاملNucleic Acid Detection Using Bioluminescence Regenerative Cycle and Statistical Signal Processing
An important emerging research area is the study and development of signal processing techniques for rapid realtime nucleic acid detection [1]. In this paper, we focus on the newly developed bioluminescence regenerative cycle (BRC) technique, and apply statistical signal processing to the data identification problem. This extended summary provides a description of the BRC platform and experimen...
متن کاملProposing New Algorithm for Modeling of Regenerative Fuel Cell (RFC) System
Regenerative Fuel Cell (RFC) systems are used for the enhancement of sustainable energy aspect in conventional fuel cells. In this study, a photovoltaic-electrolyzer-fuel cell integrated cycle has been presented. The proposed system has been designed as a novel approach for alleviating the restrictions on energy streams in the RFC systems. Modeling of the system has been performed from the mas...
متن کاملNonisotopic detection methods for strand displacement assays of nucleic acids.
Using the enzymes terminal deoxyribonucleotidyltransferase (EC 2.7.7.31) and polynucleotide phosphorylase (EC 2.7.7.8), we constructed polyriboadenylic acid tracts, approximately 8000 AMP residues long, attached to the 3'-terminus of a synthetic deoxynucleotide. The polyadenylated DNA, termed the "signal strand", was used in a displacement-type nucleic acid probe assay (see pp 1631-6, this issu...
متن کاملNovel Bioluminescent Quantitative Detection of Nucleic Acid Amplification in Real-Time
BACKGROUND The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. PRINCIPAL FINDINGS Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical chemistry
دوره 116 3 شماره
صفحات -
تاریخ انتشار 2005